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Abstract
From the poles of a generalized semiclassical Green’s function we derive
expressions for the eigenvalues of 1D multiple well potentials. In the case of
asymmetric and symmetric double wells, we also obtain analytical formulae
for, respectively, the shift and splitting of energies. Our results are better
than some approximations in the literature because they take more properly
into account the tunnelling through the barriers forming the multiple well and
depend on energy-dependent Maslov indices. We illustrate the good numerical
precision of the method by discussing some case tests on double wells.

PACS numbers: 03.65.Ge, 03.65.Sq, 03.65.Nk

1. Introduction

The structure of the energy levels in multiple well potentials in general and in double well
potentials in particular plays a key role in a broad range of phenomena. They are relevant in
the understanding of: chemical problems such as hydrogen bonds [1] and proton tunnelling
in molecules [2]; dynamics of disordered systems such as polymers [3] and glasses [4];
electrical–optical properties of resonant tunnelling devices [5], superlattices [6] and quantum
wires [7]. Also, tunnelling in a semiconductor double dot may be used as the realization of
quantum gates for quantum information processing [8]. In all these systems the main interest
is not only to obtain the spectrum with good precision, but also to determine how each energy
level is originating from the eigenenergies of the single wells which form the whole potential.

General expressions for the energy levels and for the shift and splitting of energies (see
discussion below) are obtained from WKB and instanton methods (see [9], and references
therein). However, in many situations they cannot give the necessary numerical precision one
may seek [10]. On the other hand, from supersymmetric techniques [10] or by exploiting
special properties of the potentials [9, 11] very good results can be derived, but which are then
restricted to certain classes of problems. Here we present new and general expressions for the
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Figure 1. (a) An asymmetric double well, written as a sum of a middle barrier and left and right
potential steps, V = Vl + Vm + Vr . (b) A multiple well can be faced as a double well by just
characterizing all the localized n inner barriers Vj as a single global middle barrier with quantum
coefficients Tn and Rn.

eigenvalues of multiple well potentials and shift and splitting of energy in double wells. Our
formulae are an important improvement to the usual approximations [9, 12, 13] in the literature
because they depend in a non-trivial way on the transmission and reflection amplitudes of the
barriers which separate the individual wells and on energy-dependent Maslov indices.

The paper is organized as follows. In section 2, we discuss how to construct a generalized
semiclassical Green function, Ggcl, for multiple wells, calculating it explicitly for double
wells. In section 3, we obtain from the poles of Ggcl a formula for the eigenvalues of multiple
wells and also derive shift and splitting of energy for double well potentials. In section 4, we
show the good numerical precision of our formulae by presenting some examples. In section 5,
we point out important physical aspects of our results by discussing the energy splitting in
symmetric double wells. Final remarks and conclusion are drawn in section 6.

2. Generalized semiclassical Green functions for double wells

In [14, 15], the scattering Green function for a general potential V is obtained by writing V

as a sum of n individual potentials Vj , where each Vj vanishes asymptotically. For a multiple
well we can perform the same kind of composition.

For simplicity we discuss a double well, but for a multiple well potential the reasoning is
exactly the same. As represented in figure 1(a), a double well can be faced as the sum of a
single barrier and two step potentials, the left and the right. According to [15] a generalized
semiclassical Green’s function for this system, for a fixed E and the end points xi and xf

within classical allowed regions, is given by

Ggcl(xf , xi; E) = m

ih̄2k

∑
sp

Wsp exp
[ i

h̄
Ssp(xf , xi; E)

]
. (1)

Here, sp stands for ‘scattering path’ with Ssp and Wsp being its corresponding classical action
and amplitude. Although it is not the purpose of the present work to discuss the derivations
of (1), which are done in detail in [14, 15], two comments are in order. First, expression (1)
is obtained through a recursive procedure, i.e., G for n potentials is derived from G for n − 1
potentials. In doing so, one ends up with the actions Ssp of the full V and not the actions
of the individual Vj . Second, the Wsp are related to local quantum effects originating from
scattering due to the localized barriers, so they depend on quantum amplitudes (Rj and Tj )
of the individual Vj . In appendix A, we show how Rj and Tj are obtained from the usual
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Figure 2. Four schematic examples of sp for a double well. (a) The particle tunnels the middle
barrier. (b) The particles tunnel the middle barrier and reflect twice from the walls of the right
well. (c) Three reflections within the left well, tunnelling and one reflection within the right well.
(d ) One reflection in the left well, tunnelling, one reflection in the right well, tunnelling, one
reflection in the left well and finally tunnelling.

reflection Rj and transmission Tj coefficients of Vj (for so, we need to calculate classical
actions Sj , which are then the ones for the single Vj ).

By considering the case where xl < xi < x− and x+ < xf < xr (figure 1(a)), a
typical sp is a trajectory where the particle starts from xi , suffers multiple reflections in the
left well, tunnels the middle barrier, suffers multiple reflections in the right well, tunnels
back to left side, so on and so forth, until it finally arrives at xf . Note that the particle
never goes into a classical forbidden region, i.e., no imaginary trajectory is considered.
Schematic examples of sp are given in figure 2. For each sp, the classical action is given
by Ssp = ∫

sp dxp(x), for instance, for the sp shown in figure 2(c), we have Ssp =( ∫ xi

xl
dx +3

∫ x−
xl

dx +
∫ xr

x+
dx +

∫ xr

xf
dx

)√
2m(E − V (x)). Observe that V (x) is the total potential

of the double well, with xl, x−, xr and x+ its classical turning points.
The weights Wsp are calculated in terms of quantum amplitudes related to the Vj

composing the double well. For Rl(r) being the reflection amplitude of the left (right) step
potential and Rm and Tm the reflection and transmission amplitudes of the middle barrier, the
Wsp are constructed as follows: each time the particle is reflected by hitting the classical turning
at xl (xr) in the left (right) well of the double well, Wsp gains a factor Rl (Rr). When the particle
hits the middle barrier being transmitted through it, Wsp gains a factor Tm. On the other hand,
if the particle is reflected from the middle barrier at x− (x+), Wsp gets a factor R+

m (R−
m). For

simplicity, we will discuss in this paper symmetric middle barriers, so R+
m = R−

m = Rm. The
total Wsp is then the product of all the partial amplitudes for that particular sp. As examples, for
the sp in figures 2(b) and (d ) we find, respectively, Wsp = TmRrRm and Wsp = (Rl)

2(Tm)3Rr .
To obtain Ggcl in a closed form we need to sum up all the possible sp, but it can always

be done because the sum in (1) forms a geometric series. By classifying and summing up all
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the paths we find

Ggcl = m

ih̄2k

Tm

f

(
exp

[ i

h̄
S(x−, xi)

]
+ Rl exp

[ i

h̄
S(x−, xl)

]
exp

[ i

h̄
S(xi, xl)

])
×

(
exp

[ i

h̄
S(xf , x+)

]
+ Rr exp

[ i

h̄
S(xr , x+)

]
exp

[ i

h̄
S(xr, xf )

])
(2)

with S(x2, x1) = ∫ x2

x1
dx

√
2m(E − V (x)) and

f = −T 2
mRlRr exp

[
2 i

h̄
[S(x−, xl) + S(xr, x+)]

]

+

(
1 − RmRl exp

[
2i

h̄
S(x−, xl)

]) (
1 − RmRr exp

[
2i

h̄
S(xr, x+)

])
. (3)

3. The eigenvalue formula

The poles of (2) give the eigenvalues of energy, which are the roots of f = 0, leading to

(1 − rm exp[i(Sr − µr)])(1 − rm exp[i(Sl − µl)]) + t2
m exp[i(Sr − µr + Sl − µl)] = 0 (4)

where Sl(r ) = 2
h̄

∫ x− (xr )

xl (x+)
p dx is the action in the classically allowed region on the left (right)

side of the double well. For E > V0, with V (x0) = V0 being the top of the middle barrier,
equation (4) is still valid by just setting x− = x+ = x0. tm = |Tm| and rm = |Rm| are
real functions of E, where Tm and Rm are the transmission and reflection amplitudes of the
middle potential barrier. The phase µr (l)(E) = φr (l) + ϕr (l) + φm + ϕm can be interpreted as an
energy-dependent Maslov index, which we call from now on the generalized Maslov index
(GMI). The ϕ come from writing Rm = rm exp[−iϕm] and Rr (l) = exp[−iϕr (l)], with Rr (l)

the reflection amplitude of the potential step forming the right (left) wall of the double well
in figure 1(a). The φ are related to the asymptotic behaviour of the classical action of each
individual potential composing the double well (see appendix A). In contrast to the usual
Maslov index [16], the GMI can assume non-integral values of π/2, a type of behaviour
studied by Friedrich et al [17]. For a symmetric double well, Sr = Sl and µr = µl = µ, so
equation (4) leads to

2

h̄

∫ xr

x+

p(x) dx = 2π� + µ(E) ± χ(E) � = 0, 1, . . . . (5)

The energies splitting are then due to χ = tan−1[tm/rm].
Here we should comment on a point brought to us by one of the anonymous referees.

If one has no interest in the Green function, then the above quantization conditions can be
derived in an alternative way. One can construct a WKB-like solution for the wavefunction
which incorporates the correct quantum coefficients (what is done in appendix A of [15]).
Then, (4) can also be obtained from the usual matching of such generalized asymptotic WKB
solutions of the steps and barrier potentials forming the double well.

Although the above equations were derived for double wells, they are valid for multiple
wells too. The reasoning is very simple. The middle barrier of figure 1(a) can be interpreted
as a ‘black box’, characterized by its transmission and reflection coefficients. Now suppose
that this black box is composed of n barriers as shown in figure 1(b). We can then interpret the
transmission and reflection amplitudes of the middle barrier in equations (4) and (5) as being
the total T (n) and R(n) coefficients after scattering by the n potentials inside the ‘black box’.
Thus, our formulae are also valid for multiple well potentials just by setting tm = |T (n)| and
rm = |R(n)|.
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Very good expressions for the T (n−j+1) and R(n−j+1) of a potential written as a sum of
n− j + 1 barriers, i.e., Vj +Vj+1 + · · ·+Vn, can be obtained recursively from the corresponding
coefficients of the potential Vj+1 + · · · + Vn by [15]

R(n−j+1) = Rj exp
[
−iφ(R)

j

]
+
T 2

j R(n−j)

fj

exp
[
iSj − 2iφ(T )

j

]

T (n−j+1) = Tj T
(n−j)

fj

exp
[
iSj − iφ(T )

j

]
.

(6)

Here

fj = 1 − RjR
(n−j) exp

[
iSj − iφ(R)

j

]
and Sj = 2

h̄

∫ x
(j+1)
−

x
(j)
+

p(x) dx.

Equations (4)–(6) are a great improvement on the usual semiclassical formulae (see,
for instance, [12]) and even to more sophisticated techniques such as some uniform
approximations, used to improve the WKB solutions. As it is going to be clear in the examples,
our better results are a consequence of both the way we consider the tunnelling through the
barriers forming the wells and the energy-dependent phases which are a generalization of the
usual Maslov index. We should observe, however, that in the uniform approximation (e.g., [18,
19]) the connection between allowed and forbidden regions also leads to phases which depend
on the energy. Moreover, the tunnelling is treated by semiclassical quantum amplitudes (see,
for example, the work by Strunz [19] for multiple well potentials). The formulae are relatively
general because the potential barriers are approximated by inverse parabola. That is why such
methods are usually valid near the top of the barriers forming the wells. Nevertheless, our
expressions give good results for any range of energy, being more accurate than the uniform
WKB approximation even near the top of the barriers (see section 5).

From equation (4) we derive two very important quantities [13], level shifts and splitting
for asymmetric and symmetric double wells, respectively. By level shift we mean how much a
given unperturbed eigenenergy of one of the single wells, say the left (figure 1(a)), changes due
to tunnelling, given origin to the energy level of the double well [13]. We define the left (right)
unperturbed energy by exp

[
iS̃l(r)

(
E0

l(r)

)] = 1, S̃r(l) = Sr(l) − µr(l), and set �El = El − E0
l ,

where El is the energy of the full double well originating from the perturbation of E0
l due to

tunnelling. For �El small we can expand equation (4) around E0
l keeping terms up to first

order in �El , thus [f ′ ≡ df/dE, η = sin[S̃r ]/(1 + cos[S̃r ])]

�El = t2
m[

t2
mS̃′

r +
(
1 + r2

m

)
S̃ ′

l

]
η − 2t ′mtm

∣∣
E=E0

l

. (7)

In equation (7) we do not assume E0
l − E0

r small, a condition usually imposed in the usual
WKB formula [13]. Also �El reduces to the WKB expression in the due limit of low energies.
For symmetric double wells the unperturbed energy E0 is given by exp[iS̃(E0)] = 1. For E±
(with a fixed �) coming from equation (5), we define the splitting as �Eχ = E+ − E−. By
expanding in series (5) around E0 and keeping terms only up to the first order in |E± − E0|,
we find

�Eχ = 2χ(E0)
[

2
h̄
S′(xr, x+; E0) − µ′(E0)

]
[

2
h̄
S′(xr, x+; E0) − µ′(E0)

]2 − χ ′2(E0)
. (8)
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(a) (b)

Figure 3. (a) The double well V (x), equation (9), for the parameter values as in the text. Inset,
the same V (x) with V0 = 0.04, U0 = 0.024, β = 0.1, α+ = α− = 0.3, a = b = 100. (b) Left,
the potential W(x), with W0 = 2 × 103 and γ = 1.5. Right bottom, the middle barrier of W(x)

(dashed) compared with the truncated RM fitting potential, equation (10). The parameters are
U0 = 550 and β = 2.02. Right top, the right wall of W (dashed) compared with the truncated WS
fitting potential, equation (10). Here V0 = 8.1 × 103, V = 151.7, α = 6.9 and c = 1.22.

Table 1. Eigenvalues for the potential in figure 3(a).

Level Numerical × 103 Equation (4) × 103

1 1.369 66 1.369 55
2 2.291 22 2.291 21
3 4.768 98 4.768 94
4 8.627 80 8.627 79
5 9.546 31 9.546 29
6 15.205 78 15.205 76
7 18.032 60 18.032 59
8 21.657 17 21.657 16
9 27.804 98 27.804 95

10 29.578 21 29.578 22
11 34.812 36 34.812 36
12 39.098 23 39.098 23

4. Numerical examples

To exemplify the numerical precision of our expressions we consider the double well

V (x) = V WS
+ (x; a; α+) + V WS

− (x; b; α−) + V RM(x) (9)

with V WS
± (x; c; α) = V0/(1 + exp[±α(x ± c)]), the Woods–Saxon barrier steps and

V RM(x) = U0/ cosh2[βx], the Rosen–Morse barrier. The quantum amplitudes and phases
for the Rosen–Morse and Woods–Saxon barrier are calculated in [15], and they are listed in
appendix B. In all the numerics hereafter we set h̄ = m/2 = 1.

For the parameter values V0 = U0 = 0.04, β = 0.15, α+ = 0.3, α− = 0.1, a = 70
and b = 111 (for this case the height, V (x = 0), of the middle barrier of the double well is
practically equal to 0.04), figure 3(a), we numerically calculate the eigenvalues of V (x) using
the Numerov method and compare with those obtained from (4). Table 1 displays all the levels
and indeed the results are very good.

The present technique is also applicable to quantum wells W(x) which are not written as
a sum of individual Vj . Thus, we fit parts of the whole potential by localized barriers and then
use these barriers quantum amplitudes in the previous equations. By localized we mean that
the barrier has the same shape of W(x) in the region of interest and is identically null outside
such region. The actions are still those of the original W(x).

As an example let [11] W(x) = W0(−x2 + γ x4 + 1/(4γ )). Its middle barrier and left and
right walls, figure 3(b), can be fitted respectively by the following truncated RM barrier and
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Table 2. Eigenvalues for the potential in figure 3(b ).

Level Numerical Equation (5)

1 61.653 63 61.034 22 {61.631 57}
2 61.654 59 61.035 31 {61.632 70}
3 177.650 74 177.097 18 {177.629 35}
4 177.764 73 177.228 30 {177.762 40}
5 277.077 60 276.682 61 {276.704 01}
6 281.324 80 281.405 36 {281.421 60}
7 346.426 27 346.879 63
8 378.037 88 378.627 35
9 430.871 00 431.528 90

10 485.686 60 485.471 83
11 546.213 91 545.702 84
12 610.827 84 610.716 50
25 1822.345 70 1822.128 34
30 2357.347 90 2357.246 59
40 3547.265 43 3546.858 05
50 4871.813 26 4871.181 70
51 5010.816 97 5010.205 41

WS steps:

V RM(x) −
(

U0 − W0

γ

)
for |x| <

1

β
cosh−1

[(
1 − W0

γU0

)− 1
2

]
zero otherwise

V WS
± (x; c; α) − V for x

<

>
∓ c ± 1

α
ln

[
V0

V
− 1

]
zero otherwise.

(10)

Their exact quantum coefficients can be obtained analytically (see discussion in
appendix B). Consider for W(x),W0 = 2 × 103 and γ = 1.5. For the parameter values
of the truncated potentials as in figure 3(b), we find a globally good fitting for W(x) varying
from 0 to 15W0/(4γ ) = 5000. Some eigenvalues are shown in table 2, and we see a fairly
nice agreement. We stress, however, that we can improve the eigenenergies within a certain
interval by optimizing the fitting of W around that interval. For instance, by choosing for the
fitting parameters the values U0 = 550, β = 2.02, V0 = 9 × 103, V = 94.5, α = 9.7 and
c = 1.12 we improve the fitting for W(x) ranging from 0 to W0/(4γ ) ≈ 333.33. Now, all
but one eigenenergy in this range (the values between { } in table 2) are closer to the exact
energies.

5. Discussion

Next we shall discuss why our results are better and more general than the usual WKB. For
this purpose it is sufficient to focus on symmetric double wells. For tm small, rm ≈ 1, χ ≈ tm
and we can use the semiclassical expression tm,semi = exp

[−(1/h̄)
∫ x+

x−
|p(x)| dx

]
(called

the tunnelling integral). Thus, we obtain for equation (5), 2
h̄

∫ x+

xr
p(x) dx = µ(E) + 2πk ±

exp
[− 1

h̄

∫ x+

x−
|p(x)| dx

]
, which agrees with the WKB formula for the eigenvalues of a symmetric

double well [12] except for the GMI. In the same way, for tm small equation (8) reduces to

�Et = 2t2
m(E0)

2S′(E0)/h̄ − µ′(E0)
. (11)
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Figure 4. The energy derivative of the GMI for the symmetric double well in the inset of figure 3(a).

Neglecting the energy dependence of the GMI and using tm,semi we obtain the usual
semiclassical splitting [12, 13]

�EWKB ≈ h̄ω

π
exp

[
−1

h̄

∫ x+

x−
|p(x)|

]
(12)

with π/(mω) ≡ ∫ xr

x+
dx/p(x). Equations (8) and (11) differ from the semiclassical expression

in two important aspects: (i) the derivatives of µ(E) and χ(E); (ii) the more general χ (and
tm) instead of the usual tunnelling integral tm,semi.

The physical explanation for the derivative of the GMI is simple. The classical time
τclass. = S′ goes to infinity for energies equal to the barrier maxima and the particle stops at the
barrier’s top. Due to the uncertainty principle such localization of the particle cannot happen.
However, τ = S′ − µ′ will not diverge because µ′ also diverges at this energy. Thus, µ′ is
a quantum correction to the classical time. Such a correction has already been observed for
multiple wells [19] and for width-weighted spectra [20] in the Stark problem. To exemplify
it we consider the double well in the inset of figure 3(a). Figure 4 shows its µ′ for a range
of energies close to the top of the middle barrier (≈0.024). We observe that the derivative of
the GMI increases for E approaching 0.024, starting to diverge in a way to keep the corrected
time τ finite.

For the symmetric double well in the inset of figure 3(a), table 3 shows the exact
eigenenergies (calculated numerically), the energies of the single wells (E0) and the splittings.
We compare the exact splittings with those from equation (8) and observe that the �Eχ are
always very accurate (the worst is about 0.4% off). For tm small we can use equation (11), the
results are also shown. As expected, they are very good for lower energies. For energies close
to the top of the RM barrier (U0 = 0.024), in principle this approximation is no longer valid,
the correct splittings are larger than the predictions from equation (11). Nevertheless, �Et is
still better than the WKB. The only exception is for the splitting closest to 0.024. We have
calculated the splittings for some other examples and have not seen �EWKB (equation (12))
better than �Et for any energy. So, this case is just accidental (see the discussion below).



Eigenvalues of multiple well potentials 235

0 0.012 0.024

E

0

0.2

0.4

0.6

0.8

1

χ,
 t m

 , 
t m

,s
em

i

Figure 5. Comparison of χ (solid line) with tm (long dashed line) and tm,semi (dashed line) for the
double well in the inset of figure 3(a).

Table 3. Eigenenergies and energy splitting for the potential in the inset of figure 1(c). For a better
visualization all the values are multiplied by 103.

E0 Eexact �Eexact �Eχ �Et �EWKB Eunif �Eunif

1.1835 1.1932 0.0193 0.0193 0.0193 0.0199 0.7762 0.0187
1.1739 0.7575

4.5385 4.5953 0.1118 0.1118 0.1117 0.0947 4.3446 0.0956
4.4835 4.2490

9.6589 9.8669 0.4018 0.4014 0.3980 0.3322 9.9428 0.3506
9.4651 9.5922

16.1188 16.7076 1.1075 1.1028 1.0578 0.9684 17.2713 1.0731
15.6001 16.1982

23.6209 24.8484 2.2898 2.2806 1.9877 2.2655 25.0495 1.7735
22.5586 23.2760

In table 3, we also present results calculated from the uniform WKB approximation of
[19] (the eigenvalues Eunif are obtained from the equation f2(E) = 0, p 3865 in that reference,
which is the quantization condition for a double well). In order to improve the uniform
approximation, we consider the actions for a fitted inverse parabola only for the highest four
eigenenergies considered. For the lower levels, we use the correct actions of the double well.
We see that in general (except for the last case) the splitting �Eunif predicted by the uniform
WKB approximation is better than the usual �EWKB. However, our �Eχ are much closer to
the exact ones.

Figure 5 compares χ with tm and tm,semi. For very low energies they agree. For increasing
energies tm,semi starts to deviate from χ , the same occurring for tm for higher energies.
Eventually, for E large, tm,semi and χ cross. Since for our example the crossing is near
the highest eigenvalue below the top of the middle barrier, it explains in part the good �EWKB

in comparison with �Et for this case. The explicit form for χ = tan−1(tm/rm) brings up
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0-a a

-σ + V0

0

-σ

Figure 6. The single well discussed in the text for the parameter values V0 = 0.04, a = 10 and
α = 0.1. In this case there is a large overlap between the left and right step potentials forming the
single well. For comparison the dashed curves show V WS

+ (x; a; α) − σ and V WS− (x; a; α) − σ .
The horizontal lines represent the only three eigenvalues of the system.

two interesting points. First, in the usual semiclassical formula for the splitting we use the
tunnelling integral tm,semi. Thus, one could think that a correct formula for the splitting would
involve only the exact tm. However, through χ we have shown that such a naive guess is not
true. Second, tm,semi is exactly the exponential of the action calculated between the turning
points in the inverted potential, i.e., is the action of a ‘complex’ orbit. So, a natural question
is: could we also write an expression for χ as some sort of tunnelling integral involving a
complex orbit? Answering that could throw some light onto the problem of using complex
orbits to describe quantum phenomena.

6. Remarks and conclusion

We have derived a new expression for the eigenvalues of multiple well potentials. Our results
are accurate (see table 1) and general because they take better into account the influence of
tunnelling through the middle barriers forming the whole potential and improve the results for
the unperturbed eigenenergies of the single wells by means of GMI. The importance of this
last fact has already been discussed by Friedrich et al [17] (see also [11]).

From a practical point of view we believe our results are useful. To know the influence
of barriers (through, for instance, the χ) separating the single wells may be fundamental to
optimizing the efficiency of electronic devices [5–7], and conceivably to control chemical
reactions [21]. Our expressions were initially derived for potentials in the form

∑
Vj , which

are very important in applications (see [15], and references therein). However, for potentials
not written in this way, we have shown how to adapt the method, which also leads to good
results. Indeed, considering in table 2 only the energies corresponding to the best fittings, we
see that the worst is about 0.15% off (eighth level). Such numerical precision contrasts with
typical errors found in the usual semiclassical calculations for general potentials, which can
be of about 10% [10].

One might think if the Vj start to overlap too much, our method will no longer work.
However, even in these cases our formulae can give very satisfactory results, as already
pointed out in [15]. To verify this, we have tested the method for single wells in the form
V WS

+ (x; a; α) + V WS
− (x; a; α) − σ , with σ = 2V0/(1 + exp[α a]). A typical example is

given in figure 6, where there is a large overlap between the individual step potentials.
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In this case the only three eigenvalues of the system are given by (calculated numerically):
E1 × 103 = 5.195, E2 × 103 = 13.668 and E3 × 103 = 18.050. From our method we
find E1 × 103 = 5.313, E2 × 103 = 13.733 and E3 × 103 = 18.042. The percentage
errors are, respectively, 2.27%, 0.47% and 0.04%, showing the robustness of the method. By
comparison, the usual WKB results are E1×103 = 5.592 (7.64%),E2×103 = 13.958 (2.12%)

and E3 × 103 = 18.120 (0.39%). Here it is curious to observe the good WKB result for the
eigenenergy near the top of the well. This is an artifact of the particular values of the parameters
considered, making the potential have a very smooth asymptotic behaviour near its top (see
figure 6).

Finally, we should observe that our expressions require knowledge of the quantum
amplitudes of the individual Vj , which may not be known analytically. Nevertheless, there
are very good and fast numerical methods to calculate such coefficients, as for example the
one in [22]. So, the combination of our formulae with such methods will lead to a useful tool
to calculate all the eigenvalues of general multiple well potentials. Such combination can be
much less time consuming and without drawbacks of methods as the Numerov, for which one
needs to adapt the range of the numerical integration according to the values of energy levels
in order to keep the same numerical precision for all eigenvalues.
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Appendix A

For each individual Vj composing the whole potential the coefficients Rj and Tj are derived
directly from the corresponding quantum amplitudes Rj and Tj . Here we just outline the way
they are connected, for derivations see [15]. We use the superscripts (+) and (−) to denote the
amplitudes for a plane wave incoming from left and right, respectively. For our purposes we
consider individual potentials which necessarily go to zero when x → ∓∞ in the case of (±).
For a given energy E we call x0 a classical turning point. If E > Vj for any x, then we set
as a ‘classical turning point’ the value of x for which Vj is maximum. Also, we represent the
classical action of a particle going from xa to xb by S

(±)

j (xb, xa) = ± ∫ xb

xa
dx

√
2m(E − Vj (x))

(the signs ± are to take into account the direction of movement). Consider the individual
potentials in figure 1(a) and the reflection case Rj , with x0 representing the appropriate
classical turning point and both the end points xi and xf to the left or to the right of x0. We
have then [15] (E = h̄k2/(2m))

R
(±)
j = R(±)

j exp

[
i

{
k|xf + xi| − 1

h̄
S

(±)
j (x0, xi) − 1

h̄
S

(±)
j (xf , x0)

}]
. (13)

For the tunnelling case Tj , consider again a barrier such as the middle potential in figure 1(a)
and the classical turning points x±, with one end point now being to the left of x− and the
other to the right of x+. We can write [15]

T
(±)
j = Tj exp

[
i

{
k|xf − xi| − 1

h̄
S

(±)
j (x∓, xi) − 1

h̄
S

(±)
j (xf , x±)

}]
. (14)

In the above equations the asymptotic limit of xf → ∓∞, xi → ∓∞ (reflection case) and
xf → ±∞, xi → ∓∞ (transmission case) for the Sj must be explicitly taken. In doing
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so, all the terms in xi and xf cancel out and we end up with Rj = Rj exp[−iφR(E)] and
Tj = Tj exp[−iφT (E)]. For a symmetric barrier, it is easy to show that φR(E) = φT (E).

Appendix B

The quantum-mechanical coefficients and phases for the usual RM and WS potentials
used in the examples in this paper are given in [15] (and references therein). For
completeness, we write them explicitly here. �(.) being the gamma function and s =(−1 +

√
1 − 8mU0/(β2h̄2)

)/
2, we have

RRM = �(−ik/β − s)�(−ik/β + s + 1)�(ik/β)

�(−s)�(s + 1)�(−ik/β)

T RM = k

iβ

�(−ik/β − s)�(−ik/β + s + 1)

�(−ik/β + 1)�(−ik/β + 1)

for the Rosen–Morse potential V RM(x) = U0/ cosh2[βx]. For the Woods–Saxon steps
V WS

± (x; 0) = V0/(1 + exp[±αx]), where we assume for V WS
−

(
V WS

+

)
an incoming wave

from the left (right), we find RWS = RWS
+ = RWS

− , with
[
κ =

√
2m(E − V0)/h̄

2
]

RWS = �(2 ik/α)�(−i(k + κ)/α)�(1 − i(k + κ)/α)

�(−2ik/α)�(i(k − κ)/α)�(1 + i(k − κ)/α)
.

In [15] the classical actions for these potentials are analysed in detail. From those results
and following the prescription in appendix A to determine the φ, we find (ε = U0/E, ε =
V0/E)

φRM(E) = k

β
{(√ε − 1) ln[|ε − 1|] − 2

√
ε ln[

√
ε + 1]}

φWS(E) = 2k

α
{(√1 − ε − 1) ln[ε] − √

1 − ε ln[ε − 2(1 +
√

1 − ε)] + 2 ln[2]}.
Thus, we finally have RRM = RRM exp[−iφRM], T RM = T RM exp[−iφRM] and RRM

± =
RRM exp[−iφWS].

The exact analytical expressions for the quantum coefficients (and respective phases) of
the potentials (10) used for the fitting of the quartic potential in section 4 can be obtained in
a straightforward way. They follow from the general expressions for truncated potentials in
appendix A of [14] and from the exact wavefunctions for the usual RM and WS potentials
presented in [23]. The final formulae are quite lengthy, so we do not write them explicitly
here.
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